
Programming by Demonstration with Situated Semantic Parsing

Yoav Artzi∗, Maxwell Forbes∗, Kenton Lee∗ & Maya Cakmak
Department of Computer Science & Engineering, University of Washington

185 NE Stevens Way, Seattle, WA 98195

Introduction
Programming by Demonstration (PbD) is an approach to
programming robots by demonstrating the desired behav-
ior (Billard et al. 2008). Speech is a natural, hands-free
way to augment demonstrations with control commands that
guide the PbD process. However, existing speech interfaces
for PbD systems rely on ad-hoc, predefined command sets
that are rigid and require user training (Weiss et al. 2009;
Akgun et al. 2012; Cakmak and Takayama 2014). Instead,
we aim to develop flexible speech interfaces to accommo-
date user variations and ambiguous utterances. To that end,
we propose to use a situated semantic parser that jointly rea-
sons about the user’s speech and the robot’s state to resolve
ambiguities. In this paper, we describe this approach and
compare its utility to a rigid speech command interface.

Approach
Domain
We extend the work of Cakmak and Takayama (2014) in
which users program actions on a PR2 robot by physi-
cally moving the robot’s arms and using predefined speech
commands to regulate the interaction (Fig. 1(a)). Learned
skills are represented as a sparse sequence of keyframes
(6-dimensional configurations of the two end-effectors and
gripper states) that the robot iterates through (Akgun et al.
2012). Each skill is programmed directly through a single
demonstration. Speech commands are used for changing the
robot state (arm stiff/relaxed, gripper open/closed), creating
and switching between skills, adding keyframes to the cur-
rent skill, executing and clearing the current skill and undo-
ing. Fig. 1(b) lists all commands. The robot responds to each
command verbally and with a head gesture.

Situated Semantic Parsing
Our work aims to map unconstrained spoken instructions
to known commands. We frame this problem as a seman-
tic parsing problem, where the meaning of instructions is
represented with lambda calculus expressions. We consider
both the spoken sentence and the robot state to jointly rea-
son about the logical form representing the meaning of a

∗The first three authors contributed equally to this paper.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

TEST MICROPHONE
RELEASE/HOLD RIGHT/LEFT ARM
OPEN/CLOSE RIGHT/LEFT HAND
CREATE SKILL
SAVE POSE
EXECUTE SKILL
CLEAR SKILL
NEXT/PREVIOUS SKILL
UNDO LAST COMMAND

(a) (b)

Figure 1: (a) Participant programming a towel folding skill
on the PR2 robot. (b) Full list of speech commands for in-
teracting with the robot in our baseline condition.

sentence and the execution of this logical form to a robot
command. Following Artzi and Zettlemoyer (2013b), we use
Combinatory Categorial Grammar (CCG) a linguistically-
motivated formalism for modeling a wide range of language
phenomena (Steedman 1996; 2000).

Let S be a set of states, X the set of all possible sentences
and E the space of executions, which are S → S functions.
Each s ∈ S is a fully specified state of the robot and the
interaction, including the status of each hand (open/close),
stiffness of each arm (released /held), and a record of prop-
erties that were changed most recently. The set of properties
is {arm, hand , left , right , skill , pose}. For example, if the
last object to change is the left arm, the state will include the
mappings left → left-arm and arm → left-arm . An exe-
cution e is one of the original commands listed in Fig. 1(b)
for which the robot has a known subroutine and a response.
Given a state s ∈ S and a sentence x ∈ X , we aim to find
the execution e ∈ E intended by x.

Given a sentence x, we find the most likely execution us-
ing a situated linear model. Let Y be the set of all CCG parse
trees and Z be the set of all logical forms. Given a sentence
x ∈ X , parse tree y ∈ Y , logical form z ∈ Z and an exe-
cution e ∈ E , let a derivation d be a tuple 〈x, y, z, e〉. In d,
e is an execution of the logical form z, which is contained
in the root of the parse tree y generated from the sentence x
and state s. D is the set of all derivations. Let GEN(x, s) ⊂
D be the set of all derivations given a sentence x and a
state s. The optimal derivation for a sentence x and state
s is d∗(x, s) = argmaxd∈GEN(x,s) θ · φ(x, s, d), where
φ(x, s, d) is a feature vector and θ ∈ Rd a weight vector. The
optimal execution e∗ is extracted from d∗(x, s). For exam-
ple, the command close right hand is mapped to the logical
form λa.close(a)∧patient(a,A(λx.right(x)∧hand(x)))
and the execution close-right-hand .

Jointly reasoning over semantic meaning and execution
allows our system to correctly execute underspecified com-
mands. Consider the command close and its logical form
λa.close(a), which only specifies the action type and cor-
responds to multiple executions, including close-left-hand ,
close-right-hand , close-right-arm , and even close-skill .
There are two sources of information that our system uses
to select the correct execution. First, in our system only
the hand object affords the close operation, which indi-
cates that the system should ignore both close-right-arm
and close-skill . Second, the robot state allows the system to
estimate object saliency and the impact of an action. For ex-
ample, if the state indicates that the left hand is closed and
the right is open, the parser will prefer close-right-hand
over close-left-hand . Alternatively, if both hands are open,
but the left limb was changed more recently (by the user or
the robot), close-left-hand will be preferred.

Implementation

Our PbD implementation is based on the open source imple-
mentation of Cakmak and Takayama (2014). To implement a
situated semantic parser, we used UW SPF (Artzi and Zettle-
moyer 2013a). Following Lee et al. (2014) we manually de-
signed a CCG lexicon. We initialized the lexicon with the
entries required to correctly parse the natural language com-
mands used by Cakmak and Takayama (2014). We then used
Wordnet (Fellbaum 2010) to automatically expand the lexi-
con and manually pruned the expanded set of lexical entries.
We also added lexical entries to handle coordination (e.g.
close left and right hand). Our model includes features that
indicate lexical entry usage, state-execution correspondence,
and various properties of the logical form. Model weights
are set manually. We use the Google speech recognizer and
consider phoneme distance to generate lexical entries on the
fly to overcome common speech recognition errors.

Evaluation
We evaluate our approach with the experimental setup used
by Cakmak and Takayama (2014) in the Video condition.

Comparison with Expert Users

We first evaluate our system with three expert users (devel-
opers of the system). Each user programmed four skills in
two conditions: using exact commands with the system of
Cakmak and Takayama (2014) (baseline) and using the se-
mantic parsing interface. In the latter condition, the experts
were able to exploit the joint reasoning over language and
robot state, to use shorter, more implicit commands. On av-
erage, 1.6 words were used per utterance with the semantic
parser, compared to 2.4 words per utterance in the baseline
condition (t(84) = 5.21, p < .01). However, this did not re-
sult in an observed improvement in completion time. Addi-
tionally, the experts used fewer utterances to program each
skill, but this difference was not significant. For compari-
son, Fig. 2 shows results for novice users in Cakmak and
Takayama (2014) and our expert results for Skill #3.

N E1 E2 E3
0

6

12

Time (minutes)

N E1 E2 E3
0

1

2

3

Words per command

N E1 E2 E3
0

45

90

Total commands

Figure 2: Programming time, words per command and total num-
ber of commands for Skill #3, for novice users (N) (mean and stan-
dard deviation) and experts (E1, E2 and E3) using the baseline ()
and the semantic parsing () interfaces.

Comparison with Novice Users
We conducted a pilot user study with 8 participants. Our
participants mostly used the exact commands as in the in-
structions and rarely exploited the flexibility of the seman-
tic parser. Potential factors contributing to this finding are
the noisy speech recognizer, prior expectations about natu-
ral language interfaces and the instructional material, which
was identical to the original baseline. Additionally, speech
recognition errors were more common in the semantic pars-
ing condition, since we did not limit the language that could
be used.

C
at

eg
or

y
pe

rc
en

ta
ge

25%

50%

75%

100%

Utterance

8 22 36 50

Exact
Variant
Error
NoCom
Filler

C
at

eg
or

y
pe

rc
en

ta
ge

0%

25%

50%

75%

100%

Utterance

8 22 36 50

C
at

eg
or

y
pe

rc
en

ta
ge

25%

50%

75%

100%

Utterance

8 22 36 50

Exact
Variant
Error
NoCom
Filler

Figure 3: Frequency of utterance categories for the first 60 ut-
terances for P1 (left) and P2 (right). A moving average over 15
utterances is displayed for readability.

We partially coded the sessions of two participants (P1
and P2) for error analysis. The first 60 utterances of each
session were manually classified as: (a) Exact: correctly
recognized exact match to one of the original commands,
(b) Variant: correctly recognized variation of one of the orig-
inal commands, (c) Error: no command or the wrong com-
mand recognized, (d) NoCom: input that did not correspond
to any of the possible commands, or (e) Filler: utterances not
intended as commands. The language used by P1 was typi-
cal of our participant pool, which mostly consisted of com-
puter science students. Participants often strictly adhered to
the original commands that were provided to them as ex-
amples. An exception to this trend was P2, who showed a
wider variation in language use, which we speculate is due
to different expectations of system abilities.

Discussion
Our preliminary study suggests a few directions for future
work. To allow users to fully take advantage of the system,
we need to design instructions to better support rich inter-
actions. Speech recognition can be improved by consider-
ing domain knowledge, such as the set of existing objects
and actions. Finally, the data obtained from user interactions
could be used to improve our system over time, for exam-
ple, to learn a better language model or induce object affor-
dances, as described by Artzi and Zettlemoyer (2011).

References
Akgun, B.; Cakmak, M.; Jiang, K.; and Thomaz, A. L. 2012.
Keyframe-based learning from demonstration. International
Journal of Social Robotics 343–355.
Artzi, Y., and Zettlemoyer, L. 2011. Bootstrapping semantic
parsers from conversations. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Process-
ing.
Artzi, Y., and Zettlemoyer, L. 2013a. UW SPF: The Univer-
sity of Washington Semantic Parsing Framework.
Artzi, Y., and Zettlemoyer, L. 2013b. Weakly supervised
learning of semantic parsers for mapping instructions to ac-
tions. Transactions of the Association for Computational
Linguistics 1(1):49–62.
Billard, A.; Calinon, S.; Dillmann, R.; and Schaal, S. 2008.
Robot Programming by Demonstration. In Handbook of
Robotics. Springer. chapter 59.
Cakmak, M., and Takayama, L. 2014. Teaching people how
to teach robots: The effect of instructional materials and di-
alog design. In Proceedings of the ACM/IEEE International
Conference on Human-robot Interaction.
Fellbaum, C. 2010. WordNet. Springer.
Lee, K.; Artzi, Y.; Dodge, J.; and Zettlemoyer, L. 2014.
Context-dependent semantic parsing for time expressions.
In Proceedings of the Conference of the Association for
Computational Linguistics.
Steedman, M. 1996. Surface Structure and Interpretation.
The MIT Press.
Steedman, M. 2000. The Syntactic Process. The MIT Press.
Weiss, A.; Igelsboeck, J.; Calinon, S.; Billard, A.; and
Tscheligi, M. 2009. Teaching a humanoid: A user study
on learning by demonstration with hoap-3. In IEEE Sympo-
sium on Robot and Human Interactive Communication (RO-
MAN), 147–152.

