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It’s because of what both of you are doing to have things change.

Coreference Resolution
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I think that’s what’s… Go ahead Linda.

Thanks goes to you and to the media to help us.

Absolutely.

Obviously we couldn’t seem loud enough to bring 
the attention, so our hat is off to all of you as well.

Example from Wiseman et al. (2016)



It’s because of what both of you are doing to have things change.

Coreference Resolution

 3

I think that’s what’s… Go ahead Linda.

Thanks goes to you and to the media to help us.

Absolutely.

Obviously we couldn’t seem loud enough to bring 
the attention, so our hat is off to all of you as well.

Example from Wiseman et al. (2016)



It’s because of what both of you are doing to have things change.

Coreference Resolution

 4

I think that’s what’s… Go ahead Linda.

Thanks goes to you and to the media to help us.

Absolutely.

Obviously we couldn’t seem loud enough to bring 
the attention, so our hat is off to all of you as well.

Example from Wiseman et al. (2016)



Recent Trends in 
Coreference Resolution
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End-to-end models have achieved large improvements

Advantages

• Conceptually simple

• Minimal feature engineering

Disadvantages

• Computationally expensive

• Very little “reasoning” involved



Contributions
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• Address a modeling challenge:

• Enable higher-order (multi-hop) coreference

• Address a computational challenge:

• Coarse-to-fine inference with a factored model
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Lee et al. 2017 (EMNLP):

• Consider all possible spans in the document:

• Compute neural span representations:

• Estimate probability distribution over possible antecedents:

Existing Approach:
Span-ranking Model
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✏

1 < i < n

h(i)

P (yi | h)
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the attention, so our hat is off to all of you as well.
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Limitations of a 
First Order Model
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Example from Wiseman et al. (2016)

Local information not sufficient
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Example from Wiseman et al. (2016)

Global structure reveals inconsistency

Limitations of a 
First Order Model
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• Let span representations softly condition on previous decisions

• For each iteration:

• Estimation antecedent distribution

• Attend over possible antecedents

• Merge every span representation with its expected antecedent

Higher-order Model
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I Linda you ε

P (yall of you | h)

Higher-order Model
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Higher-order Model

I Linda ε

P (yyou | h)
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Thanks goes to you and to the media to help us.
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Obviously we couldn’t seem loud enough to bring 
the attention, so our hat is off to all of you as well.
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Higher-order Model

I Linda ε

P (yyou | h)

Learn a representation of “you” w.r.t. “I”
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I Linda you ε

Higher-order Model

P (yall of you | h0)

I Linda you ε

P (yall of you | h)
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Higher-order Model
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hn(i)
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hn(i)

h0(i) = h(i)

an(i) =
X

yi

P (yi|hn�1)hn�1(i) (attention mechanism)

fn(i) = �(W [an(i), hn�1(i)]) (forget gates)

hn(i) = fn(i) � an(i) + (1� fn(i)) � hn�1(i)

P (yi|hn)

Final coreference decision conditions on 
clusters of size n + 2
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End-to-end models have achieved large improvements

Advantages

• Conceptually simple

• Minimal feature engineering

Disadvantages

•Computationally expensive
• Very little “reasoning” involved

2nd order model already runs out of memory
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It’s because of what both of you are doing to have things change.

• Mention candidates just for exposition

• O(n2) spans to consider in practice

• O(n4) coreference links to consider
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P (yi|h) = softmax(s(i, yi, h))

Coarse-to-fine scoring function:

+FFNN(h(i), h(j), h(i) � h(j))

s(i, j, h) = FFNN(h(i)) + FFNN(h(j)) Mention scores

Antecedent scores

Cheap/inaccurate antecedent scores+h(i)>Wch(j)

Only compute expensive scores 
for the top K span pairs



Experimental Setup
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Dataset: English OntoNotes (CoNLL-2012)

Baseline: Lee et al. 2017 with:

(1) Better hyperparameters (deeper LSTMs, longer spans, etc.)

(2) ELMo (Peters et al. 2018) embeddings
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• Improve structural consistency via multi-hop coreference

• Enable more complex inference via coarse-to-fine beam search


